Latest News

bioRxiv: Microbial biomass & disease in wild plants

Posted on November 03, 2019

Absolute microbial biomass as an indicator of disease in wild A. thaliana read more

The relationship between microbial biomass and disease in the Arabidopsis thaliana phyllosphere

Karasov et al., bioRxiv 828814, posted November 3, 2019.

A central goal in microbiome research is to learn what distinguishes a healthy from a dysbiotic microbial community. Shifts in diversity and taxonomic composition are important indicators of dysbiosis, but a full understanding also requires knowledge of absolute microbial biomass. Simultaneous information on both microbiome composition and the quantity of its components can provide insight into microbiome function and disease state. Here we use shotgun metagenomics to simultaneously assess microbiome composition and microbial load in the phyllosphere of wild populations of the plant Arabidopsis thaliana. We find that wild plants vary substantially in the load of colonizing microbes, and that high loads are typically associated with the proliferation of single taxa, with only a few putatively pathogenic taxa achieving high abundances in the field. Our results suggest (i) that the inside of a plant leaf is on average sparsely colonized with an estimated two bacterial genomes per plant genome and an order of magnitude fewer eukaryotic microbial genomes, and (ii) that higher levels of microbial biomass often indicate successful colonization by pathogens. Lastly, our results show that load is a significant explanatory variable for loss of estimated Shannon diversity in phyllosphere microbiomes, implying that reduced diversity may be a significant predictor of microbial dysbiosis in a plant leaf.

bioRxiv: Integrated sequencing approaches for microbiome analyses

Posted on October 30, 2019

Combining WGS and 16S rDNA to detect microbe-microbe interaction networks read more

Combining whole genome shotgun sequencing and rDNA amplicon analyses to improve detection of microbe-microbe interaction networks in plant leaves

Regalado, Lundberg et al., bioRxiv 823492, posted October 30, 2019.

Microorganisms from all domains of life establish associations with plants. Although some harm the plant, others antagonize pathogens or prime the plant immune system, acquire nutrients, tune plant hormone levels, or perform additional services. Most culture-independent plant microbiome research has focused on amplicon sequencing of 16S rDNA and/or the internal transcribed spacer (ITS) of rDNA loci, but the decreasing cost of high-throughput sequencing has made shotgun metagenome sequencing increasingly accessible. Here, we describe shotgun sequencing of 275 wild Arabidopsis thaliana leaf microbiomes from southwest Germany, with additional bacterial 16S rDNA and eukaryotic ITS1 amplicon data from 176 of these samples. The shotgun data were dominated by bacterial sequences, with eukaryotes contributing only a minority of reads. For shotgun and amplicon data, microbial membership showed weak associations with both site of origin and plant genotype, both of which were highly confounded in this dataset. There was large variation among microbiomes, with one extreme comprising samples of low complexity and a high load of microorganisms typical of infected plants, and the other extreme being samples of high complexity and a low microbial load. We use the metagenome data, which captures the ratio of bacterial to plant DNA in leaves of wild plants, to scale the 16S rDNA amplicon data such that they reflect absolute bacterial abundance. We show that this cost-effective hybrid strategy overcomes compositionality problems in amplicon data and leads to fundamentally different conclusions about microbiome community assembly.

bioRxiv: GWAS without complete genomes

Posted on October 25, 2019

No genome required: Finding causal genetic variants not present in a reference genome read more

Finding genetic variants in plants without complete genomes

Voichek, Y., & Weigel, D., bioRxiv 818096, posted October 25, 2019.

Structural variants and presence/absence polymorphisms are common in plant genomes, yet they are routinely overlooked in genome-wide association studies (GWAS). Here, we expand the genetic variants detected in GWAS to include major deletions, insertions, and rearrangements. We first use raw sequencing data directly to derive short sequences, k-mers, that mark a broad range of polymorphisms independently of a reference genome. We then link k-mers associated with phenotypes to specific genomic regions. Using this approach, we re-analyzed 2,000 traits measured in Arabidopsis thaliana, tomato, and maize populations. Associations identified with k-mers recapitulate those found with single-nucleotide polymorphisms (SNPs), however, with stronger statistical support. Moreover, we  identified new associations with structural variants and with regions missing from reference genomes. Our results demonstrate the power of performing GWAS before linking sequence reads to specific genomic regions, which allow detection of a wider range of genetic variants responsible for phenotypic variation.

Out in PNAS: Convergent evolution of herbicide resistance

Posted on September 30, 2019

We describe how glyphosate resistance evolves in waterhemp read more

Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus

Kreiner et al., PNAS, published September 30, 2019

While evolution has been thought of as playing out over millions of years, adaptation to new environments can occur very rapidly, presenting us with key opportunities to understand evolutionary dynamics. One of the most amazing examples of real-time evolution comes from agriculture, where due to the intense use of a few herbicides, many plant species have evolved herbicide resistance to become aggressive weeds. An important question has been whether herbicide resistance arises only rarely and then spreads quickly, or whether herbicide resistance arises all the time de novo. Our work with glyphosate resistance in US Midwestern and Canadian populations of Amaranthus tuberculatus reveals the answer to be, “it depends,” as we surprisingly find examples for both modes of evolution.

 

 

2019 Campus soccer tournament

Posted on August 30, 2019

Amazing: this year’s soccer team made it all the way to the semifinals! read more

Congratulations, everyone!

Our 9-players team and tournament impressions:

 

 

Climate change impact on the Arabidopsis genome

Posted on August 28, 2019

Natural selection measured along the genome read more

Natural selection on the Arabidopsis thaliana genome in present and future climates

Moises Exposito-Alonso, 500 Genomes Field Experiment Team, Hernán A. Burbano, Oliver Bossdorf, Rasmus Nielsen & Detlef Weigel
Nature, published online August 28, 2019

Through the lens of evolution, climate change is an agent of natural selection that forces populations to change and adapt, or face extinction. However, current assessments of the risk of biodiversity associated with climate change do not typically take into account how natural selection influences populations differently depending on their genetic makeup. Here we make use of the extensive genome information that is available for Arabidopsis thaliana and measure how manipulation of the amount of rainfall affected the fitness of 517 natural Arabidopsis lines that were grown in Spain and Germany. This allowed us to directly infer selection along the genome. Natural selection was particularly strong in the hot-dry location in Spain, where 63% of lines were killed and where natural selection substantially changed the frequency of approximately 5% of all genome-wide variants. A significant portion of this climate-driven natural selection of variants was predictable from signatures of local adaptation (R2 = 29–52%), as genetic variants that were found in geographical areas with climates more similar to the experimental sites were positively selected. Field-validated predictions across the species range indicated that Mediterranean and western Siberian populations—at the edges of the environmental limits of this species—currently experience the strongest climate-driven selection. With more frequent droughts and rising temperatures in Europe, we forecast an increase in directional natural selection moving northwards from the southern end of Europe, putting many native A. thaliana populations at evolutionary risk.

Tweets



Upcoming Events

Nov
27

MiKo Talk Wendy Bickmore


Dec
04

Plant Genomes Meeting


Dec
04

CSHL Meeting "Plant Genomes, Systems Biology and Engineering"

Dec 4-7
Cold Spring Harbor, New York

Detlef's keynote talk about "Epistasis, the spice of life - Lessons from the study of the plant immune system"